A University-Industry Partnership
Research Areas WinRFID ReWINS MoBIME
WINMEC WINMEC Updates
Sponsoring Members
Upcoming Events
People
Director
Contact
Advisory Boards General CIO RFID Entertainment Media Carrier Healthcare Smart Grid Technology Leadership Council Downloads Reports and Publications Demo Downloads Quarterly Reports News WINMEC News General News





WINSmartEVTM - Electric Vehicle (EV) Integration into Smart Grid with UCLA WINSmartGridTM Technology

California constitutes a significant automotive market - a place where demanding and energy-conscious consumers come together with creative designers from Hollywood, resulting in an environment rich in ideas on automotive innovation. As a result, California is home to some of the most significant innovations in EVs including Tesla and Fisker. As these innovations come on line their integration into the smart grid of the future becomes the next big challenge. We are developing a scalable and robust architecture utilizing wireless and RF-monitoring and control technologies derived from our REWINSTM research called WINSmartGridTM that allows smart vehicle and energy storage and consumption management for vehicles in home or in the office. As part of the challenging long-term research project, we are developing a series of demonstrations both at home and in the office. The first phase - developing an on-campus demonstration within UCLA - requires conducting research and demonstration on UCLA's internal electric vehicle (EV) fleet and charging stations at UCLA for its integration with our local utility's managed grid.

The objective of this project is to reduce energy cost and usage and to increase the stability of local power system by managing the charging operations of the EVs. This will be accomplished using the smart grid wireless system under development at UCLA called WINSmartGridTM.

In this project, EV usage information and electric grid status will be collected wirelessly to determine better efficient and economic charging operation of the EVs. Due to different grid stability/reliability, geographical location of the EVs and driving patterns of the EVs, effective management of charging and backfill operations may be used to lower electricity rates and flatten electric load curve. Each EV will be equipped with a handheld device to allow the driver to receive instructions or seek advice to better manage his/her EV's battery charging/backfill process.

For example, an alert can be issued to the driver when the battery capacity is below a threshold level. The alert can include a list of near-by charging station's location, distance, current and projected energy cost based on the time of the day and use an intelligent cloud-computing the driver the optimum course of action.

The batteries on the EVs when not in driving status can also be collectively used to serve as the energy storage which can backfill into the local electric grid to prevent power outage during peak demand. In this scenario, an alert is issued to the driver when a predicted instability in the grid is detected. The alert can instruct the driver to bring the vehicle to the appropriate charging station to serve as backfill battery.

Existing EVs and charging stations usage patterns will be studied to determine the appropriate sensors and wireless communication modules to be installed. Communication and alerting systems will be implemented by integrating WINSmartGridTM with our local utility's Advanced Metering Infrastructure (AMI) and the Demand Respond project.

Major areas of this research/demonstration include:

The demonstration and results of this project will provide vast amounts of data, information and knowledge to allow an effective and large scale roll-out of grid-integrated EVs across the region and in the country.